44 research outputs found

    Shape Recognition using Partitioned Iterated Function Systems

    Get PDF
    One of approaches in pattern recognition is the use of fractal geometry. The property of the self-similarity of the fractals has been used as feature in several pattern recognition methods. In this paper we present a new fractal recognition method which we will use in recognition of 2D shapes. As fractal features we used Partitioned Iterated Function System (PIFS). From the PIFS code we extract mappings vectors and numbers of domain transformations used in fractal image compression. These vectors and numbers are later used as features in the recognition procedure using a normalized similarity measure. The effectiveness of our method is shown on two test databases. The first database was created by the author and the second one is MPEG7 CE-Shape-1PartB database

    Fractal Patterns from the Dynamics of Combined Polynomial Root Finding Methods

    Get PDF
    Fractal patterns generated in the complex plane by root finding methods are well known in the literature. In the generation methods of these fractals only one root finding method is used. In this paper, we propose the use of a combination of root finding methods in the generation of fractal patterns. We use three approaches to combine the methods: (1) the use of different combinations, e.g. affine and s-convex combination, (2) the use of iteration processes from fixed point theory, (3) multistep polynomiography. All the proposed approaches allow us to obtain new and diverse fractal patterns that can be used, for instance, as textile or ceramics patterns. Moreover, we study the proposed methods using five different measures: average number of iterations, convergence area index, generation time, fractal dimension and Wada measure. The computational experiments show that the dependence of the measures on the parameters used in the methods is in most cases a non-trivial, complex and non-monotonic function

    Pseudofractal 2D Shape Recognition

    Get PDF
    From the beginning of fractal discovery they found a great number of applications. One of those applications is fractal recognition. In this paper we present some of the weaknesses of the fractal recognition methods and how to eliminate them using the pseudofractal approach. Moreover we introduce a new recognition method of 2D shapes which uses fractal dependence graph introduced by Domaszewicz and Vaishampayan in 1995. The effectiveness of our approach is shown on two test databases

    Inversion Fractals and Iteration Processes in the Generation of Aesthetic Patterns

    Get PDF
    In this paper, we generalize the idea of star-shaped set inversion fractals using iterations known from fixed point theory. We also extend the iterations from real parameters to so-called q-system numbers and proposed the use of switching processes. All the proposed generalizations allowed us to obtain new and diverse fractal patterns that can be used, e.g., as textile and ceramics patterns. Moreover, we show that in the chaos game for iterated function systems - which is similar to the inversion fractals generation algorithm - the proposed generalizations do not give interesting results

    Pseudoinversion Fractals

    Get PDF
    In this paper, we present some modifications of inversion fractals. The first modification is based on the use of different metrics in the inversion transformation. Moreover, we propose a switching process between different metric spaces. All the proposed modifications allowed us to obtain new and diverse fractal patterns that differ from the original inversion fractals

    Procedural Generation of Aesthetic Patterns from Dynamics and Iteration Processes

    Get PDF
    Aesthetic patterns are widely used nowadays, e.g., in jewellery design, carpet design, as textures and patterns on wallpapers, etc. Most of the work during the design stage is carried out by a designer manually. Therefore, it is highly useful to develop methods for aesthetic pattern generation. In this paper, we present methods for generating aesthetic patterns using the dynamics of a discrete dynamical system. The presented methods are based on the use of various iteration processes from fixed point theory (Mann, S, Noor, etc.) and the application of an affine combination of these iterations. Moreover, we propose new convergence tests that enrich the obtained patterns. The proposed methods generate patterns in a procedural way and can be easily implemented on the GPU. The presented examples show that using the proposed methods we are able to obtain a variety of interesting patterns. Moreover, the numerical examples show that the use of the GPU implementation with shaders allows the generation of patterns in real time and the speed-up (compared with a CPU implementation) ranges from about 1000 to 2500 times

    Star-shaped Set Inversion Fractals

    Get PDF
    In the paper, we generalized the idea of circle inversion to star-shaped sets and used the generalized inversion to replace the circle inversion transformation in the algorithm for the generation of the circle inversion fractals. In this way, we obtained the star-shaped set inversion fractals. The examples that we have presented show that we were able to obtain very diverse fractal patterns by using the proposed extension and that these patterns are different from those obtained with the circle inversion method. Moreover, because circles are star-shaped sets, the proposed generalization allows us to deform the circle inversion fractals in a very easy and intuitive way

    Switching Processes in Polynomiography

    Get PDF
    Mandelbrot and Julia sets are examples of fractal patterns generated in the complex plane. In the literature we can find many generalizations of those sets. One of such generalizations is the use of switching process. In this paper we introduce some switching processes to another type of complex fractals, namely polynomiographs. Polynomiograph is an image presenting the visualization of the complex polynomial's root finding process. The proposed switching processes will be divided into four groups, i.e., switching of: the root finding methods, the iterations, the polynomials and the convergence tests. All the proposed switching processes change the dynamics of the root finding process and allowed us to obtain new and diverse fractal patterns

    Visual Analysis of Dynamics Behaviour of an Iterative Method Depending on Selected Parameters and Modifications

    Get PDF
    There is a huge group of algorithms described in the literature that iteratively find solutions of a given equation. Most of them require tuning. The article presents root-finding algorithms that are based on the Newton-Raphson method which iteratively finds the solutions, and require tuning. The modification of the algorithm implements the best position of particle similarly to the particle swarm optimisation algorithms. The proposed approach allows visualising the impact of the algorithm's elements on the complex behaviour of the algorithm. Moreover, instead of the standard Picard iteration, various feedback iteration processes are used in this research. Presented examples and the conducted discussion on the algorithm's operation allow to understand the influence of the proposed modifications on the algorithm's behaviour. Understanding the impact of the proposed modification on the algorithm's operation can be helpful in using it in other algorithms. The obtained images also have potential artistic applications

    Polynomiography for the Polynomial Infinity Norm via Kalantari's Formula and Nonstandard Iterations

    Get PDF
    In this paper, an iteration process, referred to in short as MMP, will be considered. This iteration is related to finding the maximum modulus of a complex polynomial over a unit disc on the complex plane creating intriguing images. Kalantari calls these images polynomiographs independently from whether they are generated by the root finding or maximum modulus finding process applied to any polynomial. We show that the images can be easily modified using different MMP methods (pseudo-Newton, MMP-Householder, methods from the MMP-Basic, MMP-Parametric Basic or MMP-Euler-Schroder Families of Iterations) with various kinds of non-standard iterations. Such images are interesting from three points of views: scientific, educational and artistic. We present the results of experiments showing automatically generated non-trivial images obtained for different modifications of root finding MMP-methods. The colouring by iteration reveals the dynamic behaviour of the used root finding process and its speed of convergence. The results of the present paper extend Kalantari's recent results in finding the maximum modulus of a complex polynomial based on Newton's process with the Picard iteration to other MMP-processes with various non-standard iterations
    corecore